9 research outputs found

    Do Large Scale Molecular Language Representations Capture Important Structural Information?

    Full text link
    Predicting the chemical properties of a molecule is of great importance in many applications, including drug discovery and material design. Machine learning based molecular property prediction holds the promise of enabling accurate predictions at much less computationally complex cost when compared to, for example, Density Functional Theory (DFT) calculations. Various representation learning methods in a supervised setting, including the features extracted using graph neural nets, have emerged for such tasks. However, the vast chemical space and the limited availability of labels make supervised learning challenging, calling for learning a general-purpose molecular representation. Recently, pre-trained transformer-based language models on large unlabeled corpus have produced state-of-the-art results in many downstream natural language processing tasks. Inspired by this development, we present molecular embeddings obtained by training an efficient transformer encoder model, MoLFormer. This model employs a linear attention mechanism coupled with highly parallelized training on SMILES sequences of 1.1 billion unlabeled molecules from the PubChem and ZINC datasets. Experiments show that the learned molecular representation outperforms supervised and unsupervised graph neural net baselines on several regression and classification tasks from 10 benchmark datasets, while performing competitively on others. Further analyses, specifically through the lens of attention, demonstrate that MoLFormer indeed learns a molecule's local and global structural aspects. These results provide encouraging evidence that large-scale molecular language models can capture sufficient structural information to be able to predict diverse molecular properties, including quantum-chemical propertie

    Wasserstein Barycenter Model Ensembling

    Get PDF
    In this paper we propose to perform model ensembling in a multiclass or a multilabel learning setting using Wasserstein (W.) barycenters. Optimal transport metrics, such as the Wasserstein distance, allow incorporating semantic side information such as word embeddings. Using W. barycenters to find the consensus between models allows us to balance confidence and semantics in finding the agreement between the models. We show applications of Wasserstein ensembling in attribute-based classification, multilabel learning and image captioning generation. These results show that the W. ensembling is a viable alternative to the basic geometric or arithmetic mean ensembling.Comment: ICLR 201

    Auditing and Generating Synthetic Data with Controllable Trust Trade-offs

    Full text link
    Data collected from the real world tends to be biased, unbalanced, and at risk of exposing sensitive and private information. This reality has given rise to the idea of creating synthetic datasets to alleviate risk, bias, harm, and privacy concerns inherent in the real data. This concept relies on Generative AI models to produce unbiased, privacy-preserving synthetic data while being true to the real data. In this new paradigm, how can we tell if this approach delivers on its promises? We present an auditing framework that offers a holistic assessment of synthetic datasets and AI models trained on them, centered around bias and discrimination prevention, fidelity to the real data, utility, robustness, and privacy preservation. We showcase our framework by auditing multiple generative models on diverse use cases, including education, healthcare, banking, human resources, and across different modalities, from tabular, to time-series, to natural language. Our use cases demonstrate the importance of a holistic assessment in order to ensure compliance with socio-technical safeguards that regulators and policymakers are increasingly enforcing. For this purpose, we introduce the trust index that ranks multiple synthetic datasets based on their prescribed safeguards and their desired trade-offs. Moreover, we devise a trust-index-driven model selection and cross-validation procedure via auditing in the training loop that we showcase on a class of transformer models that we dub TrustFormers, across different modalities. This trust-driven model selection allows for controllable trust trade-offs in the resulting synthetic data. We instrument our auditing framework with workflows that connect different stakeholders from model development to audit and certification via a synthetic data auditing report.Comment: 49 pages; submitte
    corecore